Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques

نویسنده

  • T. Sasamoto
چکیده

The studies of fluctuations of the one-dimensional Kardar-Parisi-Zhang universality class using the techniques from random matrix theory are reviewed from the point of view of the asymmetric simple exclusion process. We explain the basics of random matrix techniques, the connections to the polynuclear growth models and a method using the Green’s function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SECOND-ORDER FLUCTUATIONS AND CURRENT ACROSS CHARACTERISTIC FOR A ONE-DIMENSIONAL GROWTH MODEL OF INDEPENDENT RANDOM WALKS1 BY TIMO SEPPÄLÄINEN University of Wisconsin

Fluctuations from a hydrodynamic limit of a one-dimensional asymmetric system come at two levels. On the central limit scale n1/2 one sees initial fluctuations transported along characteristics and no dynamical noise. The second order of fluctuations comes from the particle current across the characteristic. For a system made up of independent random walks we show that the second-order fluctuat...

متن کامل

Shape Fluctuations and Random Matrices

We study a certain random growth model in two dimensions closely related to the one-dimensional totally asymmetric exclusion process. The results show that the shape fluctuations, appropriately scaled, converges in distribution to the Tracy-Widom largest eigenvalue distribution for the Gaussian Unitary Ensemble (GUE).

متن کامل

Second-order fluctuations and current across characteristic for a one-dimensional growth model of independent random walks

Fluctuations from a hydrodynamic limit of a one-dimensional asymmetric system come at two levels. On the central limit scale n1/2 one sees initial fluctuations transported along characteristics and no dynamical noise. The second order of fluctuations comes from the particle current across the characteristic. For a system made up of independent random walks we show that the second order fluctuat...

متن کامل

Asymmetric Behavior of Inflation in Iran: New Evidence on Inflation Persistence Using a Smooth Transition Model

T his paper investigates the asymmetric behavior of inflation. We use logistic smooth transition autoregressive (LSTAR) model to characterize the regime-switching behavior of Iran’s monthly inflation during the period May 1990 to December 2013. We find that there is a triple relationship between the inflation level, its fluctuations and persistence. The findings imply that the behavi...

متن کامل

Derivation of a Matrix Product Representation for the Asymmetric Exclusion Process from Algebraic Bethe Ansatz

We derive, using the algebraic Bethe Ansatz, a generalized Matrix Product Ansatz for the asymmetric exclusion process (ASEP) on a one-dimensional periodic lattice. In this Matrix Product Ansatz, the components of the eigenvectors of the ASEP Markov matrix can be expressed as traces of products of non-commuting operators. We derive the relations between the operators involved and show that they ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007